Potassium hydroxide
Phân loại:
Thành phần khác
Mô tả:
Potassium Hydroxide là gì?
Potassium hydroxide là một hợp chất vô cơ có công thức KOH. Hợp chất này có thể được tìm thấy ở dạng tinh khiết bằng phản ứng của natri hydroxit với kali không tinh khiết. Potassium hydroxide thường được sử dụng thay thế Natri hydroxit trong nhiều ứng dụng; tuy nhiên, Natri hydroxit được ưa chuộng hơn vì chi phí thấp hơn.
Dù rằng tốn kém, nhưng Potassium hydroxide lại có rất nhiều ứng dụng không thể thiếu trong đời sống như: Sản xuất phân bón chứa kali, nguyên liệu chính trong sản xuất dầu diesel sinh học, dung dịch làm thuốc nhuộm vải, len sợi; xử lý da động vật phục vụ cho công nghệ thuộc da;... Đặc biệt, Potassium hydroxide được dùng phổ biến trong ngành mỹ phẩm với công dụng chính là làm trương nở carbomer và trung hòa độ pH.
Potassium hydroxide là tiền thân của phần lớn các loại xà phòng mềm, lỏng. Nhưng chất này cũng có thể được sử dụng trong công thức của sản phẩm tắm, sản phẩm làm sạch, dầu gội, sản phẩm cạo râu, thuốc làm rụng lông, sản phẩm chăm sóc da và sản phẩm chống nắng, nước hoa, bột chân, thuốc nhuộm tóc màu, trang điểm, sản phẩm làm móng, sản phẩm làm sạch cá nhân.
Điều chế sản xuất Potassium Hydroxide
Cho Natri Hydroxide phản ứng với Kali không tinh khiết sẽ tạo ta Potassium hydroxide ở dạng tinh khiết. So với Natri hidroxit, quá trình điều chế ra Kali hidroxit tốn kém hơn nhiều.
Các phương pháp sản xuất:
-
Phương trình điện phân dung dịch Kali clorua:
2H2O + 2KCl → 2KOH + H2 + Cl2
Quá trình sản xuất này ít khi được áp dụng do tốn nhiều chi phí và không đem lại hiệu quả cao. Do đó, người ta thường sử dụng phương pháp sản xuất sau đây để đem lại hiệu quả kinh tế cao hơn.
-
Sản xuất từ Kali format như sau:
2KCOOH + 2Ca(OH)2 + O2 → 2KOH + 2CaCO3+ 2H2O
Cơ chế hoạt động của Potassium Hydroxide
Potassium Hydroxide trung hòa độ pH của dung dịch chứa nó trong quá trình gia công mỹ phẩm nhưng không làm ảnh hưởng đến bất cứ thành phần nào cũng không gây ra phản ứng hóa học nào. Hòa tan hoàn toàn Potassium Hydroxide vào dung dịch không gây ảnh hưởng đến khối lượng.
Dược động học:
Dược lực học:
Xem thêm
Vaseline là một tá dược thân dầu được dùng khá phổ biến vào ngành công nghiệp mỹ phẩm và dược phẩm. Thành phần chính của vaseline là petroleum Jelly - một hợp chất có dạng đặc, sệt bao gồm sáp tự nhiên và dầu khoáng bổ trợ cho nhau, tạo thành lớp phủ lên trên bề mặt của da. Chính nhờ đặc tính này mà vaseline được xem là một trong những phương pháp giúp chữa lành vết thương khi bị bỏng và sưng tấy ngoài da.
Vaseline được cấu tạo từ hỗn hợp các hydrocarbon no rắn, lỏng (gồm hydrocarbon mạch nhánh và không phân nhánh) và được tinh chế từ dầu mỏ. Bên cạnh đó còn có một số ankan mạch vòng và các hydrocarbon thơm.
Có hai loại vaseline gồm vaseline trắng và vaseline vàng. Vaseline trắng tính chất mềm, màu trắng trong, nhiệt độ nóng chảy là từ 38-56°C, trong khi đó vaseline vàng thì mềm, màu vàng hoặc vàng xám, nhiệt độ nóng chảy trong khoảng 38-56°C. So với vaseline thì loại vàng thường trung tính hơn.
Vaseline tan được trong benzen, carbon disulfide, cloroform, ether, hexane cũng như phần lớn những loại dầu dễ bay hơi; tuy nhiên chất này lại không tan trong aceton, ethanol nóng và ethanol lạnh (95%), glycerin và nước.
Vaseline có đặc tính nhờn quánh, trơn, mềm nên rất thích hợp trong các chế phẩm thuốc mỡ.
Collagen là gì?
Collagen là một loại protein cứng, dạng sợi và không hòa tan. Chúng rất dồi dào khi chiếm tới 1/3 lượng protein của cơ thể. Hầu hết các phân tử của collagen được liên kết với nhau nhằm tạo thành các sợi mỏng và dài. Collagen được xem như một loại keo dán, giữ cho tất cả các mô tế bào dính chặt vào nhau.
Collagen mang lại rất nhiều lợi ích cho cơ thể con người, không chỉ giúp da khỏe mạnh và đàn hồi mà còn giúp hỗ trợ xương, dây chằng, cơ bắp, sụn cũng như các cơ quan nội tạng. Nhiều chế phẩm collagen còn được sử dụng trong điều trị đau khớp kết hợp với nhiều loại viêm khớp và phẫu thuật; điều trị đau lưng, đau cổ và đau sau chấn thương.
Có hai loại collagen:
-
Collagen nội sinh: Do cơ thể chúng ta tự tổng hợp, loại collagen này đảm nhận một số chức năng quan trọng. Vì thế, việc suy giảm collagen nội sinh sẽ có liên quan tới một số vấn đề về sức khỏe.
-
Collagen ngoại sinh: Đây là loại collagen tổng hợp từ một nguồn bên ngoài cơ thể.
Thành phần của collagen có ít nhất 16 loại và trong đó có 4 loại chính, bao gồm:
-
Loại I: Được cấu tạo từ các sợi dày đặc và chiếm 90% lượng collagen trong cơ thể. Thành phần này góp phần tạo nên cấu trúc của gân, sụn sợi, mô liên kết, răng, cấu trúc da và xương.
-
Loại II: Được tạo ra từ các sợi lỏng lẻo hơn và có trong sụn đàn hồi và đệm khớp.
-
Loại III: Loại này có tác dụng hỗ trợ cấu trúc của khối cơ bắp, động mạch,...
-
Loại IV: Thành phần này có trong da và nó có tác dụng hỗ trợ quá trình thanh lọc.
Điều chế sản xuất collagen
Các sản phẩm chức năng bổ sung collagen trên thị trường hiện nay phần lớn đều có nguồn gốc từ động vật, đặc biệt là lợn, bò và cá. Thông thường, các thực phẩm bổ sung chứa collagen loại I, II, III hoặc hỗn hợp cả ba loại. Collagen được cung cấp cho cơ thể chủ yếu dưới các dạng sau:
-
Collagen thủy phân: Còn được gọi là collagen hydrolyzate hoặc collagen peptide, được chia thành các đoạn protein nhỏ hơn gọi là axit amin;
-
Gelatin: Collagen trong gelatin chỉ bị phân hủy một phần thành các axit amin.
-
Nguyên sơ: Ở dạng thô - protein collagen vẫn còn nguyên.
Trong số ba dạng nêu trên, collagen thủy phân được cơ thể hấp thụ hiệu quả nhất. Nghĩa là, collagen dưới bất kỳ dạng nào được đưa vào cơ thể đều được thủy phân thành các axit amin thì cơ thể mới có thể hấp thụ dễ dàng để xây dựng collagen và các dạng protein cần thiết khác trong các mô cơ quan.
Collagen trên thực tế có thể tự tổng hợp thông qua sử dụng các axit amin từ các loại thực phẩm giàu protein. Tuy nhiên, để tăng cường lượng collagen và các lợi ích khác cho cơ thể thì bạn cần phải bổ sung thêm chúng.
Cơ chế hoạt động
Collagen bắt nguồn từ các nguyên bào sợi, là những tế bào da chuyên bào chuyên biệt nằm dưới lớp trung bì có chức năng sản xuất ra các sợi, mà chủ yếu là Collagen, elastin (protein giúp da có thể hồi phục lại).
Khi nhận được tín hiệu sản xuất collagen, nguyên bào sợi sẽ kết hợp những thành phần acid amin cần thiết lại dưới xúc tác của Vitamin C và một số chất khác tổng hợp ra những tiểu đơn vị collagen ngắn được gọi là procollagen.
Sau khi được chuyển ra khỏi tế bào sợi, những đơn vị này kết hợp với nhau để tạo thành những phân tử collagen hoàn chỉnh, tiếp tục xoắn lại trở thành các loại sợi, xây dựng kết cấu cho làn da, xương, mạch máu, cơ bắp và nhiều bộ phận khác.
Agar là gì?
Việt Nam có sự đa dạng và phong phú về nguồn lợi rong biển như rong nâu, rong đỏ và rong lục. Loài có giá trị kinh tế cao như rong đỏ. Rong đỏ chứa rất nhiều các hoạt chất có giá trị như carrageenan ở rong sụn (Kappaphycus alvarezii, Kappaphycus striatum,…), agar ở trong rong câu chỉ vàng Gracilaria…
Agar là chất nền vững chắc để chứa môi trường nuôi cấy cho công việc vi sinh. Agar có thể được sử dụng như một chất thay thế gelatin cho người ăn chay, một chất nhuận tràng, một chất ức chế sự thèm ăn và một chất làm đặc cho súp. Trong việc bảo quản trái cây, kem lạnh và các món tráng miệng khác, trong trong sản xuất bia, giấy và vải định cỡ.
Chất tạo gel trong agar là một polysaccharide không phân nhánh thu được từ thành tế bào của loại tảo đỏ, chủ yếu từ tengusa (Gelidiaceae) và ogonori (Gracilaria). Agar là một polime được tạo thành từ các tiểu đơn vị của đường galactose.
Agar được ứng dụng trong rất nhiều lĩnh vực khác nhau như công nghệ thực phẩm, công nghệ dược, công nghệ vi sinh,… Agar là một loại rong biển được dùng để làm thuốc. Rong biển đỏ của Nhật là nguồn agar thường gặp nhất. Ở Nhật, agar còn thường được dùng để giảm cân.
Ngoài ra, Agar có tác dụng chữa bệnh tiểu đường và táo bón. Trong mỹ phẩm Agar là một dạng chất gel và được sử dụng trong sữa dưỡng da, thuốc gel, và một số loại thuốc đạn.
Đặc tính lưu biến của agar lại phụ thuộc vào cấu trúc của agar-agar cũng như sự liên kết của agar-agar với các ion kim loại, với các polysaccharide hay protein khác nhau.
Điều chế sản xuất Agar
Người ta có thể chiết xuất agar từ rong biển với nước nóng, sau đó là đóng băng và tan băng làm sạch. Quy trình chiết xuất thương mại liên quan đến rửa, chiết xuất hóa học, lọc, gel hóa, tẩy trắng, đông lạnh, rửa, làm khô và xay xát.
Bột rau câu agar được làm chủ yếu từ rong, là loại thuộc ngành tảo tự nhiên. Để làm ra được loại bột này trước tiên sau khi lấy tảo về làm đông, chúng được ép thủy lực để tách toàn bộ nước sau đó sấy khô và nghiền thành dạng bột mịn.
Cơ chế hoạt động của Agar
Hoạt chất Agar có tính thuận nghịch về nhiệt. Đun nóng polymer tạo thành một khối, khi dung dịch nguội đi các chuỗi sẽ bao lấy nhau và liên kết với nhau từng đôi một bằng liên kết hidro để tạo thành chuỗi xoắn kép. Giai đoạn tiếp theo là sự tổ hợp các chuỗi xoắn kép lại với nhau, tạo ra một mạng lưới không gian ba chiều nhốt các chất khô bên trong do số lượng liên kết hidro rất lớn. Cấu trúc gel vững chắc nhờ các nút mạng chứa liên kết ion nội phân tử, nên gel agar rất cứng và vững chắc.
Quá trình hình thành gel, độ ổn định của gel bị ảnh hưởng bởi hàm lượng, khối lượng phân tử của nó. Kích thước lỗ gel khác nhau phụ thuộc vào nồng độ agar, khi nồng độ agar càng cao kích thước lỗ gel càng nhỏ. Gel khô có thể tạo thành một màng trong suốt, bền cơ học và có thể bảo quản lâu dài mà không bị hỏng.
Khả năng tạo gel phụ thuộc hoàn toàn vào hàm lượng đường agarose. Agarose là các gel ngậm nước, các phân tử polymer kết hợp với nhau thông qua liên kết hydro. Đặc tính độc đáo này của gel, các gel giữ bên trong mạng lưới một lượng to lớn của nước có thể di chuyển tự do hơn thông qua việc trao đổi ion. Mỗi phân tử, duy trì cấu trúc của chúng trong sự độc lập hoàn toàn. Vì vậy, quá trình này không phải là sự đồng trùng hợp, nhưng là điểm thu hút tĩnh điện đơn giản. Hàm lượng agarose phụ thuộc vào nguyên liệu rong câu ban đầu và quá trình chế biến. Sự có mặt của ion sulfat làm cho gel bị mờ, đục, tránh dùng nước cứng để sản xuất. Chúng có khả năng giữ mùi, vị vàmàu, acid thực phẩm cao trong khối gel nhờ nhiệt độ nóng chảy cao (85–90oC).
Gel agar chịu được nhiệt độ chế biến lên đến 100oC, pH 5 – 8, có khả năng trương phồng và giữ nước. Không nên dùng agar trong môi trường pH nhỏ hơn 4 và có nhiều chất oxi hóa mạnh, agar có thể tạo đông ở nồng độ thấp. Biến đổi này có thể được lặp đi lặp lại nhiều lần nếu không có sự tác động của các chất thủy phân, agarose hay chất oxy hóa phá hủy gel. Gel agar khác các gel carrageenan, alginate là gel agar không cần sự tồn tại của cation vẫn có thể gel hóa. Tính chất quan trọng của gel agar là hiện tượng trễ gel rất cao, (sự khác biệt nhiệt độ giữa gel của chúng khoảng 38ºC), nhiệt độ nóng chảy (khoảng 85ºC).
Nồng độ agar được dùng tạo gel là từ 0,5% đến 2%, đối với mỗi loài rong khác nhau thì gel agar có hiện tượng trễ gel là khác nhau. Hiện tượng trễ gel được thể hiện trong hình 12 đối với mỗi loại agar khác nhau là 45ºC, các gel carrageenans có hiện tượng trễ ở khoảng 12ºC đến 26oC, thấp hơn so với gel agar. Chứng tỏ sự hiện diện của agarose ban đầu có tác động tới hiện tượng trễ gel. Nhiệt độ gel là một chỉ số để xác định nhiệt độ agarophyte sử dụng để hình thành môi trường agar. Cần dựa vào nhiệt độ tạo gel đặc trưng của agar sẽ xác định được nguồn gốc của nó.
Nhiệt độ tạo gel ảnh hưởng bởi mức độ methyl hóa của nhóm C6 của agarobioses hiện diện trong môi trường agar. Sự methyl hóa của agaroses trong Gelidiella lớn hơn trong Pterocladia, điều này chứng tỏ, methyl hóa nhóm carbon 6 lớn hơn sẽ có nhiệt độ gel hóa cao hơn. Quá trình gel hóa là quá trình tỏa nhiệt, các phân tử agarose được hòa tan trong nước.
Xoắn đôi phản đối xứng (B1) được hình thành trong sự kết hợp để tạo thành một lưới vĩ mô (C và D), xoắn B2 đơn giản được nối bằng cầu nối hydro tạo ra cấu trúc (xoắn đôi đối xứng) và hình thành nên mạng lưới vĩ mô có thể nhìn thấy (C và D). Cả hai quá trình tạo gel có thể cùng tồn tại và một hoặc các điều kiện khác tùy thuộc vào tốc độ làm mát, một tốc độ nhanh hơn ủng hộ quá trình đầu tiên. Nó đều dựa vào sự hình thành các cầu nối hydro và tạo ra một cấu trúc lưới vĩ mô.
Glycyrrhetinic Acid là gì?
Stearyl Glycyrrhetinate là một dẫn xuất của Glycyrrhetinic Acid được phân lập từ cây cam thảo.
Tên khoa học của cây cam thảo là Clycyrrhiza uralensis fish và Glycyrrhixa glabra L. Loại cây này có thể sống lâu năm và cao tới trên 1 mét, thân cây có lông rất nhỏ. Người ta dùng phần thân và rễ của cây sấy khô để sử dụng. Cây cam thảo có vị ngọt, tính bình có tác dụng bổ tỳ vị, thanh nhiệt, giải độc, điều hòa các vị thuốc cũng như nhuận phế… Cam thảo đã được dùng làm thuốc ở châu Âu và châu Á từ lâu đời. Cam thảo trong y học Trung Quốc được dùng để điều trị bệnh loét dạ dày, tổn thương da, ho, táo bón… Chiết xuất từ cây cam thảo nên được đánh giá là an toàn và là thành phần không thể thiếu trong các sản phẩm mỹ phẩm và làm đẹp da.
Điều chế sản xuất
Làm ẩm 1kg dược liệu với 300ml EtOH30% trong 4 giờ. Đun hồi lưu trong 6 phút 3 lần sau đó rút dịch chiết, lọc qua giấy lọc và cô cách thủy cho đến khi dịch lọc còn lại ⅓ thể tích là được, để nguội…Axit hóa bằng HCI 10-pH 1-2 tạo tủa GA làm lạnh trong 30 phút gạn bỏ nước thu tủa và rửa tủa bằng nước đến khi dịch rửa không còn axit.
Hòa tủa với EtOH 96%, lọc qua phễu Buchner, rửa lọc bằng EtOH 96% đến khi hết màu vàng, cô đặc cách thủy dịch lọc để loại bớt EtOH, sấy chân không ở nhiệt độ 60°C đến khi thu được cao khô GA (100 g). Cân 100g cao khô GA cho vào bình nón nút mài, chiết bằng aceton x 3 lần, mỗi lần chiết trong 2 giờ ở nhiệt độ 56 - 57°C, thu dịch chiết, lọc qua phễu Buchner. Kiềm hóa dịch lọc bằng dung dịch KOH 10% trong MeOH đến pH gần bằng 9, thu
tủa GA 3K, lọc lấy tủa và rửa tủa lần lượt với aceton (300 ml), methanol (300 ml), sau đó sấy chân không ở nhiệt độ 60°C. Hòa tan hoàn toàn muối GA 3K trong axit acetic băng ở nhiệt độ 95 - 100°C, để nguội, kết tỉnh. Lọc lấy tinh thể muối GA 1K, rửa lần lượt bằng axit acetic băng, methanol, ether ethylic, để khô tự nhiên, thu được muối GA 1K. Kết tinh muối GA IK trong ethanol - nước (tỷ lệ 5:1). Lặp lại quy trình lọc và kết tinh như trên thêm 2 lần nữa. Axit hóa muối GA 1K bằng dung dịch H2SO4 1% ở 100°C trong 20 phút, để nguội ở
nhiệt độ phòng, lọc lấy tủa, rửa tủa với nước đến khi dịch rửa hết axit, sấy chân không trong 3 giờ ở 60°C. GA thu được khuấy trộn với cloroform, lọc lấy tủa, sấy chân không trong 1 giờ ở 60°C, thu được GA. GA thu được sau quá trình loại tạp được tinh chế bằng sắc ký lỏng hiệu năng cao, điều chế thu được 0,820 g. Điều chế GH: Muối GA 1K thu được sau quá trình loại tạp được thủy phân bằng HC1 7%, rửa bằng nước đến khi hết axit lắc với cloroform, lọc lấy dịch cloroform, cô thu hồi dung môi thu được cao GH. Cao GH được phân lập bằng sắc ký cột với hệ diclorometan - methanol với độ phân cực tăng dần, thu lấy phân đoạn chứa GH, cô thu hồi dung môi và kết tinh nhiều lần trong methanol thu được 0,230g.
Đánh giá GA và GH điều chế
Định tính và xác định cấu trúc: Sắc ký lớp mỏng, HPLC phân tích, điểm chảy, phổ IR, phổ MS và phổ NMR.
Định lượng: Khảo sát và đánh giá quy trình định lượng cho hai chất chuẩn điều chế, xác định hàm lượng của hai chất chuẩn điều chế.
Cơ chế hoạt động
Glycyrrhetinic Acid có thể được tìm thấy ở dạng alpha và beta. Dạng alpha chủ yếu ở gan và tá tràng và do đó, người ta cho rằng tác dụng chống viêm gan của thuốc này chủ yếu là do hoạt động của đồng phân này. Tác dụng chống viêm của Glycyrrhetinic Acid được tạo ra thông qua việc ức chế TNF alpha và caspase 3. Nó cũng ức chế sự chuyển vị của NF kB vào nhân và liên hợp các gốc tự do. Một số nghiên cứu đã chỉ ra sự ức chế theo hướng Glycyrrhetinic đối với sự tăng sinh tế bào T CD4 + thông qua JNK, ERK và PI3K/AKT.
Hoạt tính kháng vi rút của Glycyrrhetinic Acid bao gồm ức chế sự nhân lên của vi rút và điều hòa miễn dịch. Hoạt tính kháng vi rút của Glycyrrhetinic Acid dường như có phổ rộng và có thể bao gồm một số loại vi rút khác nhau như vi rút vacxin, vi rút herpes simplex, virus bệnh Newcastle và vi rút viêm miệng mụn nước.
Ảnh hưởng của Glycyrrhetinic Acid lên sự trao đổi chất được cho là có liên quan đến hoạt động ức chế của nó đối với 11-beta-hydroxysteroid dehydrogenase loại 1, do đó làm giảm hoạt động của hexose-6-phosphate dehydrogenase. Mặt khác, một số nghiên cứu đã chỉ ra khả năng gây cảm ứng lipoprotein lipase trong các mô ngoài gan và do đó nó được đề xuất để tăng cường các tình trạng rối loạn lipid máu.
Diacetyl boldine là gì?
Diacetyl boldine là hoạt chất được gọi là DAB hoặc bằng tên thương hiệu Lumiskin, có nguồn gốc từ cây Boldo ở miền trung Chile nhưng có thể được tìm thấy ở các vườn bách thảo châu Âu và Bắc Phi.
Lá của cây Boldo có mùi hương tương tự như long não và thường được sử dụng để nấu ăn hoặc như một loại trà thảo mộc thường được pha với Yerba Mate. Ở Brazil, Boldo được phân loại là một loài thực vật trị liệu và được sử dụng để điều trị chứng khó tiêu nhẹ.
Tại Pháp và Braxin, cây Boldo được sử dụng như một loại thảo dược để chữa bệnh khớp, gout, rối loạn gan và viêm tuyến tiền liệt.
Boldo trong lịch sử đã được sử dụng như một loại thuốc bổ gan và điều trị sỏi mật của người Chile bản địa.
Điều chế sản xuất
Chất Diacetyl boldine được chiết xuất từ vỏ của cây Boldo.
Cơ chế hoạt động
Diacetyl boldine ức chế Tyrosinase, tác động lên cơ chế sản sinh Melanin, dẫn đến làm sáng da và thay đổi tông màu da khiến da đều màu và trở nên đẹp tự nhiên hơn.
Adipic Acid là gì?
Adipic Acid (hay acid hexanedioic) là hợp chất hữu cơ, công thức hóa học là (CH2)4(COOH)2.
Trong công nghiệp, Adipic Acid là acid dicarboxylic quan trọng nhất. Adipic Acid tồn tại ở dạng bột tinh thể màu trắng, mỗi năm được sản xuất vào khoảng 2,5 tỷ kg.
Chủ yếu là tiền chất để sản xuất nylon, Adipic Acid hiếm khi xuất hiện trong tự nhiên. Trong đời sống, Adipic Acid là phụ gia thực phẩm được sản xuất với số E là E355.
Một số tên gọi khác của Adipic Acid là:
-
Axit Hexanedioic;
-
Axit adipic Axit;
-
Butan-1,4-dicarboxylic Axit;
-
Hexan-1,6-dioic axit;
-
1,4-butanedicarboxylic.
Adipic Acid có khả năng tham gia phản ứng trùng ngưng.
Điều chế sản xuất Adipic Acid
Quá trình hydrocarboxyl hóa tiến hành như sau:
CH 2 = CH − CH = CH 2 + 2 CO + 2 H 2 O → HO 2 C (CH 2 ) 4 CO 2 H
Một phương pháp khác là phân cắt oxy hóa cyclohexene bằng hydro peroxide, thải ra nước.
Trong lịch sử, Adipic Acid được điều chế bằng cách oxy hóa các chất béo khác nhau.
Cinnamaldehyde là gì?
Cinnamaldehyde còn được gọi là Aldehyde cinnamic; 3-phenyl-2-propan; Anđehit cinnamyl; Phenylalacrolein; quế chi và trans-cinnamaldehyde. Đây là thành phần có trong vỏ của cây quế (Cinnamomum zeylanicum), xuất xứ từ Sri Lanka và Ấn Độ và được trồng ở Brazil, Jamaica và Mauritius. Cinnamaldehyde cũng được tìm thấy trong các thành viên khác của loài Cinnamomum bao gồm cả cây cassia và long não.
Có công thức hóa học là C6H5CH = CHCHO, Cinnamaldehyde là một hợp chất hữu cơ xuất hiện tự nhiên chủ yếu là đồng phân trans (E), mang lại hương vị và mùi cho quế.
Đây là một Phenylpropanoid được tổng hợp tự nhiên bằng con đường sinh tổng hợp Shikimat, tồn tại dưới dạng chất lỏng nhớt, màu vàng nhạt. Tinh dầu của vỏ quế chứa khoảng 90% là Cinnamaldehyde.
Công thức phân tử của Cinnamaldehyde được xác định vào năm 1834 bởi các nhà hóa học người Pháp Jean Baptiste André Dumas (1800–1884) và Eugène Melchior Péligot (1811–1890) và mặc dù công thức cấu trúc của nó chỉ được giải mã vào năm 1866 bởi nhà hóa học người Đức Emil Erlenmeyer (1825– Năm 1909).
Điều chế sản xuất
Có nhiều cách để điều chế Cinnamaldehyde. Thành phần này được điều chế thương mại bằng cách xử lý vỏ cây Cinnamomum zeylanicum với hơi nước. Anđehit hòa tan trong hơi nước, sau đó Cinnamaldehyde được chiết xuất khi hơi nước nguội đi và ngưng tụ lại để tạo thành nước lạnh, trong đó hợp chất ít hòa tan hơn nhiều.
Cinnamaldehyde cũng có thể được tổng hợp bằng cách cho phản ứng giữa Benzaldehyde (C6H5CHO) với Acetaldehyde (CH3CHO). Hai hợp chất ngưng tụ sau khi loại bỏ nước để tạo thành Cinnamaldhyde.
Năm 1834, Cinnamaldehyde được phân lập từ tinh dầu quế bởi Jean-Baptiste Dumas và Eugène-Melchior Péligot và được nhà hóa học người Ý Luigi Chiozza tổng hợp trong phòng thí nghiệm vào năm 1854.
Tinh dầu quế được chiết xuất từ vỏ cây quế với thành phần chính là Cinnamaldehyde. Có hai cách để chiết xuất được tinh dầu quế từ vỏ quế: Đó là công nghệ chưng cất hơi nước và chiết xuất qua dung môi. Nhưng để đạt thành phần Cinnamaldehyde lên đến 90% thì phải sử dụng công nghệ chưng cất hơi nước, còn với công nghệ chiết xuất qua dung môi chỉ đạt được 62 % đến 73 % tỉ lệ Cinnamaldehyde.
Cơ chế hoạt động
Nhiều dẫn xuất của Cinnamaldehyde có ích về mặt thương mại. Rượu Dihydrocinnamyl, xuất hiện tự nhiên nhưng được sản xuất bằng cách hydro hóa gấp đôi Cinnamaldehyd, được sử dụng để tạo ra mùi thơm của lục bình và hoa cà. Rượu Cinnamyl cũng tương tự và có mùi của hoa cà, có thể được sản xuất bắt đầu từ Cinnamaldehyd. Dihydrocinnamaldehyd được tạo ra bởi quá trình hydro hóa chọn lọc của tiểu đơn vị kiềm.
Certofoed Organic Lemon Essential Oil là gì?
Certofoed Organic Lemon Essential Oil là loại tinh dầu được chiết xuất từ vỏ chanh tây hữu cơ, mang lại nhiều công dụng tuyệt vời trong làm đẹp và điều trị bệnh. Cây chanh rất quen thuộc, có nguồn gốc từ châu Á và được ứng dụng vào chữa các bệnh truyền nhiễm từ ngàn xưa. Chanh có đặc tính sát trùng, chống vi khuẩn nên được những thủy thủ trong Hải quân Hoàng gia Anh dùng trong khi chèo thuyền để bảo vệ bản thân trước sự tàn phá của bệnh thiếu máu và thiếu vitamin.
Bên cạnh đó, cả quả chanh và tinh dầu của nó từ rất lâu đã được sử dụng trong y học để điều trị muôn vàn các vấn đề sức khỏe. Ngày nay, Certofoed Organic Lemon Essential Oil đã được sử dụng rộng rãi trong nền công nghiệp mỹ phẩm, nước hoa, trong thực hành ẩm thực nhằm giúp làm đẹp da cũng như xoa dịu tinh thần khi căng thẳng, thiếu sự tập trung.
Thành phần hóa học chính có trong Certofoed Organic Lemon Essential Oil bao gồm:
-
Pinene: Có vai trò quan trọng trong các hoạt động chống viêm, chống nhiễm trùng, giúp giảm ho và khó thở;
-
Camphene: Có khả năng làm dịu, chống oxy hóa và kháng viêm.
-
Sabinene: Có đặc tính chống oxy hóa, kháng vi khuẩn và nấm cũng như kháng viêm.
-
Myrcene hoạt tính: Có khả năng chống viêm, chống đột biến, giảm đau và an thần.
-
Linalool: Có khả năng làm giảm viêm và giảm đau, xoa dịu tâm trạng và cải thiện giấc ngủ.
-
Limonene: Hợp chất có khả năng kích thích hệ thần kinh, cân bằng tâm trạng, giảm cảm giác thèm ăn, giải độc.
-
Nerol: Có khả năng chống oxy hóa, chống viêm, giúp cân bằng, an thần và giảm đau.
-
Neral: Có khả năng kháng viêm.
Điều chế sản xuất
Certofoed Organic Lemon Essential Oil nguyên chất được chiết xuất bằng phương pháp ép lạnh vỏ của quả chanh - vốn chứa nhiều tuyến dầu hoạt tính nhất.
Sau quá trình chiết xuất, tinh dầu chanh hữu cơ thu được có kết cấu lỏng, dạng nước, màu vàng nhạt, dậy mùi hương.
Chitosan là gì?
Chitosan là dẫn xuất N-deacetylated của Chitin – một Polysaccharid có nhiều trong nấm, nấm men, các động vật không xương sống ở biển và động vật chân đốt. Chất Chitin được dùng để sản xuất ra Chitosan.
Chitin là một Polysaccharide mạch thẳng, là một Polymer của nhiều đơn vị N-acetyl-glucosamine nối với nhau nhờ cầu β-1,4glucoside. Vì Chitin tự nhiên có trong vỏ tôm thường liên kết với Protein, Lipid, Canxi, sắc tố… nên thường phải làm sạch trước khi sử dụng để sản xuất Chitosan.
Hai bước chính để làm sạch Chitin gồm khử khoáng bằng Acid và khử Protein bằng kiềm hoặc một Enzyme protease. Chitosan liên quan chặt chẽ với Chitin, nung nóng Chitin trong dung dịch xút đậm đặc, các gốc Acetyl bị khử hết và Chitin chuyển thành Chitosan.
Trong thiên nhiên, Chitin còn hiện diện dưới nhiều hình thức: Khá tinh khiết (sâu bướm), trong các lớp rất mỏng (cánh bướm, với hiệu ứng màu tuyệt vời), cùng với các protein tạo thành sclerotin (chất chính trong bộ xương ngoài của côn trùng)…
Chitosan có khả năng tạo thành màng mỏng, kết hợp với nước, chất béo, ion kim loại, có tính kháng khuẩn…, vì vậy được ứng dụng trong nhiều lĩnh vực khác nhau, đặc biệt là trong dược phẩm, mỹ phẩm.
Điều chế sản xuất Chitosan
Chitin dễ dàng thu được từ vỏ cua, vỏ tôm và sợi nấm.
- Cách đầu tiên, sản xuất Chitin có liên quan đến các ngành công nghiệp thực phẩm, điển hình là ngành đóng hộp. Sản xuất Chitin và Chitosan phần lớn dựa vào vỏ tôm và vỏ cua được lấy về từ các nhà máy đóng hộp. Việc sản xuất Chitosan từ vỏ động vật giáp xác (được xem như dạng chất thải của ngành công nghiệp thực phẩm) mang tính khả thi rất cao về mặt kinh tế.
- Cách thứ hai, sản xuất phức hợp Chitosan-glucan đi liền với quá trình lên men, tương tự như việc sản xuất Axit citric từ nấm Aspergillus niger, Mucor rouxii và Streptomyces bằng cách xử lý kiềm và tạo ra phức hợp trên.
Chất kiềm loại bỏ protein và đồng thời có thể đẩy nhóm chức acetyl ra khỏi hợp chất Chitin. Tùy thuộc vào nồng độ kiềm, một số glycans hòa tan được loại bỏ. Việc sử dụng vỏ động vật giáp xác chủ yếu để loại bỏ protein và hòa tan một lượng lớn Calcium carbonate có trong vỏ cua. Hợp chất Chitin đã bị khử Acetyl sẽ được tạo ra trong dung môi 40% Sodium hydroxide ở nhiệt độ 1.200C liên tục 1 tới 3 giờ đồng hồ. Cách xử lý này tạo ra 70% Chitosan đã khử Acetyl.
Cơ chế hoạt động
Sự xuất hiện của các vi sinh vật kháng kháng sinh dẫn đến nhu cầu cấp thiết để phát triển các loại kháng sinh thay thế. Các vi hạt Chitosan (CM), có nguồn gốc từ Chitosan, đã được chứng minh là làm giảm sự phát tán của vi khuẩn E. coli O157: H7, cho thấy khả năng sử dụng CM như một chất kháng khuẩn thay thế. Tuy nhiên, cơ chế cơ bản của CM trong việc giảm sự phát triển của mầm bệnh này vẫn chưa rõ ràng.
Để hiểu phương thức hoạt động, cần nghiên cứu các cơ chế phân tử của hoạt động kháng khuẩn của CM bằng phương pháp in vitro và in vivo. CM là một chất diệt khuẩn hiệu quả với khả năng phá vỡ màng tế bào. Các thử nghiệm liên kết và nghiên cứu di truyền với một chủng đột biến ompA đã chứng minh rằng Protein màng ngoài OmpA của E. coli O157: H7 rất quan trọng đối với liên kết CM. Hoạt động liên kết này được kết hợp với tác dụng diệt khuẩn của CM.
Điều trị CM có hiệu quả làm giảm sự phát tán của E. coli gây bệnh trong tử cung so với điều trị kháng sinh. Vì độc tố Shiga được mã hóa trong bộ gen của xạ khuẩn thường biểu hiện quá mức trong quá trình điều trị bằng kháng sinh, nên thường không khuyến cáo điều trị bằng kháng sinh vì nguy cơ cao mắc hội chứng urê huyết tán huyết.
Tuy nhiên, xử lý CM không tạo ra vi khuẩn hoặc độc tố Shiga ở E. coli O157: H7, cho thấy CM có thể là một ứng cử viên tiềm năng để điều trị các bệnh nhiễm trùng do mầm bệnh này gây ra. Công việc này thiết lập một cơ chế cơ bản, nhờ đó CM phát huy hoạt tính kháng khuẩn, cung cấp cái nhìn sâu sắc về việc điều trị các bệnh do nhiều mầm bệnh gây ra, bao gồm cả vi sinh vật kháng kháng sinh.
Enzymes là gì?
Enzyme (hay còn gọi là men) là tên gọi của chất xúc tác sinh học có protein là thành phần cơ bản, được tạo thành từ các tế bào sinh vật. Enzyme tồn tại trong cơ thể con người, động vật và cả thực vật, hay bất cứ nơi nào tồn tại sự sống thì đều tồn tại enzyme.
Trong cơ thể, enzyme có tác dụng làm tăng tốc độ phản ứng hóa học, liên kết và biến đổi cấu trúc của các phân tử nhằm phục vụ cho nhiều hoạt động khác nhau như hô hấp, tiêu hóa, chức năng cơ và thần kinh. Cụ thể là:
- Với hệ tiêu hóa, enzym giúp cơ thể phá vỡ các phân tử phức tạp thành các phân tử đơn giản hơn như glucose, để sử dụng làm năng lượng.
- Enzyme trợ giúp quá trình sao chép DNA mỗi lần tế bào phân chia bằng cách tháo cuộn DNA và sao chép thông tin.
- Trong cơ thể, gan có chức năng phân hủy các chất độc với sự hỗ trợ của nhiều loại enzym khác nhau.
Trong những điều kiện nhất định thì enzym mới hoạt động hiệu quả, tốt nhất là vào khoảng 37°C. Dưới mức nhiệt độ này, tuy enzym vẫn hoạt động nhưng chúng hoạt động chậm hơn rất nhiều.
Cũng giống vậy, tùy thuộc vị trí của các enzym trong cơ thể, chúng chỉ có thể hoạt động trong một khoảng pH nhất định. Chẳng hạn, ở độ pH 7,5 thì các enzym trong ruột sẽ hoạt động được tốt nhất, trong khi đó ở độ pH 2, các enzym trong dạ dày hoạt động tốt nhất vì dạ dày có tính axit hơn nhiều.
Các enzyme sẽ thay đổi hình dạng gây khó khăn trong việc liên kết với cơ chất nếu nhiệt độ quá cao; môi trường quá axit hoặc quá kiềm.
Cơ thể chúng ta chứa hàng ngàn loại enzyme, điển hình là một số enzym dưới đây:
-
Lipase có vai trò giúp tiêu hóa chất béo tại ruột;
-
Amylase giúp chuyển hóa tinh bột thành đường;
-
Maltase giúp chuyển hóa đường maltose thành glucose. Maltose được tìm thấy trong các loại thực phẩm như khoai tây, mì ống và bia;
-
Trypsin giúp chuyển hóa protein thành các axit amin. Trypsin được tiết ở trong ruột non;
-
Lactase là enzym cũng được tìm thấy ở ruột non, giúp chuyển hóa lactose thành glucose và galactose;
-
Acetylcholinesterase giúp phân hủy chất dẫn truyền thần kinh acetylcholine trong dây thần kinh và cơ;
-
Helicase là loại enzyme tháo xoắn DNA;
-
DNA polymerase giúp tổng hợp DNA từ deoxyribonucleotide.
Có thể nói, nhờ có enzyme mà cơ thể chúng ta chuyển hóa tối đa dinh dưỡng thu được từ thức ăn nạp vào hàng ngày. Chúng ta sẽ hạn chế được tình trạng chậm tiêu sau khi ăn, nuôi dưỡng cơ thể hiệu quả hơn.
Điều chế sản xuất Enzymes
Enzyme tiêu hóa và enzyme chuyển hóa là ai loại enzyme chính được cơ thể người có thể tạo ra; trong đó các loại enzyme tiêu hóa được tiết ra trong tuyến nước bọt, dạ dày, tuyến tụy và ruột non giúp cơ thể tiêu hóa thực phẩm.
Trong khi đó, các loại enzyme chuyển hóa lại được sản sinh trong các tế bào, giúp cơ thể tổng hợp năng lượng và sử dụng năng lượng - yếu tố giúp con người có khả năng hít thở, suy nghĩ, di chuyển…
Cơ chế hoạt động của Enzymes
Enzym đóng vai trò quan trọng trong việc bảo vệ sức khỏe chúng ta bởi sự có mặt của chúng vô cùng cần thiết cho việc duy trì sự sống hàng ngày.
Dù đã có nhiều nghiên cứu được các nhà khoa học tiến hành song cho đến nay vẫn còn nhiều điều về enzym chưa thể giải đáp cũng như chưa giải thích được enzyme trong các tế bào được hình hình theo cơ chế nào. Chỉ biết rằng, rất nhiều enzyme được bản thân sinh vật tự sản sinh ra để đáp ứng nhu cầu của cơ thể mà thôi.
Số lượng enzym trong cơ thể chúng ta phải tính đến hàng ngàn, cụ thể là có hơn 5.000 loại enzyme mang đến 25.000 tác dụng khác nhau. Mọi hoạt động trong cơ thể chúng ta, từ hấp thụ đến tiêu hóa, hay như các cử động chân tay, suy nghĩ cũng đều được các enzym điều khiển.
Để dễ hình dung về cơ chế hoạt động của Enzyme trong cơ thể, chúng ta có thể theo dõi qua công thức sau:
E + S → ES → P + E
Trong đó:
- E là Enzyme -Chất xúc tác;
- S là cơ chất (Substrate) – Các hoạt chất chịu tác động của Enzyme;
- ES là phức hợp Enzyme - Cơ chất;
- P là sản phẩm (Product).
Như vậy, công thức cho chúng ta thấy cơ chế hoạt động (xúc tác) của enzyme có 3 giai đoạn:
-
Giai đoạn thứ nhất: Enzyme kết hợp với cơ chất bằng liên kết yếu tạo thành phức hợp Enzyme - Cơ chất (ES) không bền nhờ hình thành nhiều liên kết đặc biệt là liên kết hydrogen. Sự liên kết này làm thay đổi cấu hình không gian của cơ chất làm thay đổi động năng cũng như thế năng, kết quả là làm cho phân tử cơ chất trở nên linh hoạt hơn, nhờ đó tham gia phản ứng dễ dàng.
-
Giai đoạn thứ hai: Xảy ra sự biến đổi cơ chất dẫn tới sự kéo căng và phá vỡ các liên kết đồng hóa trị tham gia phản ứng.
-
Giai đoạn thứ ba: Enzyme xúc tác lên cơ chất tạo thành sản phẩm, còn enzyme được giải phóng ra dưới dạng tự do.
Dimethiconol còn được gọi là cao su silicone - một loại polyme tổng hợp tương tự như dimethicone (một loại silicone thông thường), trong đó phân tử chứa hai nhóm methyl ở đầu chuỗi đã được thay thế bằng các nhóm hydroxyl (-OH).
Trước khi tìm hiểu dimethiconol có chức năng gì, đầu tiên chúng ta cần biết là giữa các phân tử silicones có khoảng cách rộng và tạo thành một mạng tinh thể phân tử. Mạng tinh thể này sẽ cho phép silicone tạo thành một lớp màng trên bề mặt da sau khi thoa, cùng lúc đó quá trình trao đổi chất của da vẫn diễn ra. Điều này có nghĩa là oxy, nitơ cũng như những chất dinh dưỡng khác sẽ vẫn có thể đi qua lớp màng được hình thành bởi silicone này. Tuy nhiên, phần lớn các loại silicon đều sẽ không cho nước đi qua nên mang lại hiệu quả rất cao trong việc ngăn ngừa da bị mất nước, gây khô da.
Silicone mang lại rất nhiều lợi ích cho làn da, điển hình là cải thiện cảm giác, sự biểu hiện và hiệu suất của mỹ phẩm sau khi sử dụng trên da. Dimethiconol hoạt động như chất dưỡng ẩm mượt, điều hòa, dung môi và chất phân phối những thành phần khác trong sản phẩm chăm sóc da. Lưu ý là do silicones có sức căng bề mặt thấp để chúng dễ dàng lan rộng trên bề mặt da và tạo thành lớp phủ bảo vệ nên chúng cũng có thể gây ra tình trạng da bị đỏ, kích ứng da.
Avobenzone là gì?
Avobenzone là dẫn xuất metan dibenzoyl, có công thức hóa học là C20H22O3. Avobenzone tồn tại ở dạng bột tinh thể màu trắng đến vàng. Đặc tính của thành phần này là có thể tan trong dầu (isopropanol, decyl oleate, axit triglyceride/axit capric và các loại dầu khác).
Năm 1973, Avobenzone được phát hiện lần đầu, vài năm sau đó nó đã được sử dụng rộng rãi khắp Châu Âu. Năm 1998, FDA chấp thuận cho thành phần này xuất hiện trong các sản phẩm mỹ phẩm. Avobenzone cho đến nay vẫn được đánh giá là an toàn khi sử dụng bôi ngoài da dù có một số lo ngại về ảnh hưởng của chất này đối với cơ thể.
Avobenzone có khả năng hấp thụ tia UVA nên được sử dụng rộng rãi trong tất cả các loại kem chống nắng phổ rộng có dán nhãn “broad spectrum” (chống lại cả tia UVA và UVB).
Một điều cần lưu ý là càng tiếp xúc với tia UV thì khả năng hấp thụ của Avobenzone càng suy giảm theo thời gian, cụ thể là giảm xuống 36‰ sau 1 giờ sử dụng. Do đó, các nhà sản xuất sẽ thường kết hợp Avobenzone cùng các thành phần chống nắng khác để giúp chúng trở nên ổn định hơn, kéo dài tác dụng hơn dưới ánh nắng mặt trời.
Cơ chế hoạt động của Avobenzone
Có mặt trong kem chống nắng hóa học, Avobenzone sẽ giúp hấp thụ toàn bộ quang phổ của tia UVA – tia cực tím gây lão hóa da rồi chuyển đổi sang bức xạ hồng ngoại ít gây hại cho người sử dụng.
Sản phẩm liên quan